An Inverse Eigenvalue Problem for Jacobi Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

An inverse eigenvalue problem for symmetrical tridiagonal matrices

We consider the following inverse eigenvalue problem: to construct a symmetrical tridiagonal matrix from the minimal and maximal eigenvalues of all its leading principal submatrices. We give a necessary and sufficient condition for the existence of such a matrix and for the existence of a nonnegative symmetrical tridiagonal matrix. Our results are constructive, in the sense that they generate a...

متن کامل

on the nonnegative inverse eigenvalue problem of traditional matrices

in this paper, at rst for a given set of real or complex numbers  with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which  is its spectrum. in continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Stability estimates for the Jacobi inverse eigenvalue problem

We present different stability estimates for the Jacobi inverse eigenvalue problem. First, we give upper bounds expressed in terms of quadrature data and not having weights in denominators. The technique of orthonormal polynomials and integral representation of Hankel determinants is used. Our bounds exhibit only polynomial growth in the problem’s dimension (see [4]). It has been shown that the...

متن کامل

The inverse eigenvalue problem via orthogonal matrices

In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2011

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2011/571781